
A Guide to the unifDAG Package for R
(unifDAG version: 1.0.4)

Markus Kalisch

October 26, 2024

Contents

1 Introduction 1

2 Enumeration methods 2

1 Introduction

For some applications, such as obtaining good starting points for Markov
Chain methods, it is desirable to sample a DAG uniformly from the space
of all (labelled) DAGs given p nodes. While it is trivial to sample labelled
undirected graphs with p nodes uniformly, sampling DAGs uniformly is much
more difficult.

Suppose, for example, we want to sample uniformly from the labelled
DAGs on two nodes A and B. There are three such DAGs:

� G1 : A→ B

� G2 : A← B

� G3 : A B (i.e., without an edge between A and B).

With uniform sampling each of these graphs should be sampled with
probability 1

3 , i.e. P (G1) = P (G2) = P (G3) =
1
3 .

One naive approach could be first sampling a labelled undirected graph
on p nodes uniformly and then sampling uniformly from all DAGs on the
sampled undirected graph (i.e. choosing a random permutation of the labels
and thus fixing an order).

Let us illustrate this using the previous example. On two nodes A and
B, there are two undirected graphs possible: A B and A−B. If we sample
A B nothing needs to be oriented an we end up with G3. If we sample
A − B, we choose a random order of the nodes A and B and thus would
obtain G1 : A → B and G2 : A ← B each with conditional proability 0.5.

1

It is easy to see that with this approach P (G1) = 0.25, P (G2) = 0.25 and
P (G3) = 0.5.

Thus, this approach does not lead to a uniform distribution on the space
of DAGs with p nodes but overrepresents sparse DAGs. In particular, the
empty DAG with p nodes is much more likely than a particular complete
DAG on p nodes: While the empty and the complete undirected graph are
equally likely, all permutations of the empty undirected graph will lead to
the empty DAG, while every permutation of the complete undirected graph
will lead to a different DAG.

2 Enumeration methods

This problem was solved in [1] by relating each DAG to a sequence of out-
points (nodes with no incoming edges) and then to a composition of in-
tegers. The package pcalg implements this solution in two ways: Func-
tion unifDAG() performs the exact procedure using precomputed enumer-
ation tables and is feasible for DAGs with up to 100 nodes. The function
unifDAG.approx() uses the exact procedure for DAGs up to a specified
number of nodes (option n.exact). For larger numbers of nodes an approx-
imation is used instead. The accuracy of the approximation is based on the
option n.exact and will be within the uniformity limits of a 32 (64) bit
integer sampler when set to n.exact=20 (n.exact=40). Thus, for practical
purposes these approximations are indistiguishable from the exact solution
but are much faster to compute. Both functions can optionally generate
edge weights.

In the following example we first sample a DAG (dag1) uniformly from
the space of all DAGs with p = 10 nodes using the exact method. Then,
we sample a DAG (dag2) uniformly from the space of all DAGs with p =
150 nodes using the approximate method. The option n.exact=40 is used,
so that the sampling procedure will match the exact sampling procedure
on a 64-bit integer sampler. In both cases, the edge weights are sampled
independently from Uniform(0, s).

myWgtFun <- function(m,lB,uB) { runif(m,lB,uB) }
set.seed(123)

dag1 <- unifDAG(n = 10, weighted = TRUE, wFUN = list(myWgtFun, 0, 2))

dag2 <- unifDAG.approx(n = 150, n.exact = 40, weighted = TRUE,

wFUN = list(myWgtFun, 0, 2))

Returning to our original example with two nodes, we see that function
unifDAG() indeed samples G1, G2 and G3 with roughly equal frequencies.

2

cnt <- c(0,0,0) ## count occurances of G1, G2 and G3

set.seed(123)

for (i in 1:100) {
g <- unifDAG(n = 2, weighted = FALSE)

m <- as(g, "matrix") ## adjacency matrix

if ((m[2,1]==0) & (m[1,2]==0)) {
cnt[3] <- cnt[3] + 1 ## G3

} else if (m[2,1]==0) {
cnt[1] <- cnt[1] + 1 ## G1

} else {
cnt[2] <- cnt[2] + 1 ## G2

}
}
cnt

[1] 36 36 28

References

[1] Jack Kuipers and Giusi Moffa. Uniform random generation of large
acyclic digraphs. Statistics and Computing, 25(2):227–242, 2015.

3

	Introduction
	Enumeration methods

